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On the baroclinic dynamics, hamiltonian
formulation and general stability characteristics of
density-driven surface currents and fronts over a
sloping continental shelf
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A new theory is presented to describe the baroclinic dynamics of density-driven
currents and fronts over a sloping continental shelf. The frontal dynamics is
geostrophic to leading-order but not quasi-geostrophic since the dynamic frontal
height is not small in comparison with the scale frontal thickness. The evolution of
the underlying slope water is modelled quasigeostrophically and includes the
influence of a background vorticity gradient due to the sloping bottom. The two
layers are coupled together via baroclinic vortex-tube stretching associated with the
perturbed density-driven current. The current dynamics includes the advection of
mean flow vorticity. The model equations are obtained in a formal asymptotic
expansion of the relevant two-layer shallow-water equations and boundary
conditions. It is shown that the governing equations for the model can be put into
non-canonical hamiltonian form.

A comprehensive analysis of the general linear and nonlinear stability charac-
teristics of the governing equations is given. The normal mode problem associated
with steady along-shore currents is studied and sufficient stability and necessary
instability conditions are presented. It is shown that a zero in the frontal vorticity
gradient is not needed for instability. Jump conditions for the perturbation frontal
thickness are systematically derived associated with the continuity of pressure and
normal mass flux for steady frontal configurations that possess discontinuities in the
velocity or vorticity, and rigorous regularity conditions are obtained for the
perturbation thickness on outcroppings. The formal stability of arbitrary steady
currents is studied. It is shown how to obtain general steady current solutions as a
variational solution to a suitably constrained hamiltonian. General criteria are
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296 G. E. Swaters

1. Introduction

One of the underlying assumptions in the quasigeostrophic theory for a stratified
rotating fluid is the requirement that the vertical deflections of the isopycnals is
small in comparison with the scale depth. This means, for example, in the context of
a two-layer model that the magnitude of the dynamic deflections of the interface
between the two layers is implicitly assumed to be small relative to both of the
individual layer mean thicknesses. This assumption leads to significant difficulties in
attempting to apply baroclinic quasigeostrophic theory to model fronts and currents
in, for example, the coastal regions of the world oceans where it is typically the case
that isopycnals associated with these flows intersect the surface or the bottom.
Notwithstanding these points, the application of quasigeostrophic theory has been
able to explain, at least qualitatively, some aspects of the baroclinic instability
observed in some frontal flows (see, for example, Orlanski 1968 ; Smith 1976; Mysak
et al. 1981 ; Griffiths & Linden 1981 ; Mertz et al. 1990). To a large extent, much of the
theoretical work on frontal instability done over the last decade is based on Griffiths
et al. (1982), hereafter referred to as GKS. The dynamical model that GKS developed
was based on a semi-geostrophic approximation in which the along-front velocities
were geostrophically determined and the across-front or transverse velocities where
determined ageostrophically. Baroclinicity was reduced to its simplest form by
examining an equivalent-barotropic or reduced-gravity model. Even with all these
approximations, the resulting linear stability equations could not be solved
analytically except in the zero along-front wavenumber limit for a zero potential
vorticity flow. The specific physical problem that GKS examined was the stability
of a mesoscale gravity current on a linearly sloping bottom. The stratification
characteristics of a flow of this type will in general contain isopycnals that typically
intersect the bottom both on the onshore and offshore side of the flow, i.e. a coupled
front configuration. In addition to developing an analytical theory for the stability
problem, GKS compared the theoretical results against experimental observations.
There were, however, substantial differences between the two. In particular, the
observed instabilities occurred over a range of finite wavenumbers (including the
most unstable mode), while the theory formally required asymptotically small
wavenumbers. A second difficulty was that the observed instabilities do not appear
to depend sensitively on the current width in contradiction to the theory. These
differences were attributed to the presence of another, possibly baroclinic, unstable
mode outside the range of applicability of the GKS analysis.

Swaters (1991) developed a baroclinic instability theory for mesoscale gravity
currents on a sloping bottom in an attempt to explain these differences. This model
differed from the GKS model in two key aspects. Specifically, the flow field in the
gravity current was assumed geostrophic (for which there is observational evidence,
e.g. LeBlond et al. (1991)), and a second assumption was that the gravity current
strongly interacts with the surrounding fluid through vortex stretching (as suggested
by the Stern theorem for isolated cold-core eddies on a sloping bottom, e.g. Mory et
al. (1987)). The Swaters’ theory was able to describe several of the instability features
seen in the GKS experiments. For example, the most unstable mode had a finite non-
zero wavelength and the instability characteristics did not depend sensitively on the
underlying current width. Another interesting aspect of the GKS experiments was
the observation of a dipole ‘cyclone—anticyclone’ pair instability for some regions of
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Stability of coastal currents 297

parameter space. The GKS model was unable to describe this mode. The Swaters’
model was able to reproduce this second mode for certain parameter values.

Killworth & Stern (1982) applied the equivalent-barotropic GKS theory to surface
fronts and currents along an oceanic boundary and made a qualitative comparison
between the results of their theory and the experimental observations made by
Griffiths & Linden (1981, 1982) on density-driven currents. While there was some
agreement between the two, there were significant differences particularly with
respect to predicted and observed growth rates and wavelengths. Some of these
differences may be attributed to the important baroclinic nature of the flow
configuration as suggested by Griffiths & Linden (1981). The principal purpose of this
paper is to present a theory describing the baroclinic dynamics of buoyancy-driven
coastal currents and fronts over a sloping bottom and to provide a detailed
mathematical analysis of the hamiltonian structure and general linear and nonlinear
stability properties of this model.

The new model presented here focuses in on three kinematical and dynamical
processes that are important in the transition to instability and hence eddy
formation for coastal flows with isopycnal outcroppings. Specifically, we model the
instability process as a dynamical balance between the release of mean kinetic energy
from the front, the generation of relative vorticity in the surrounding slope water by
baroclinic vortex-tube stretching due to the perturbed front, and the rectifying
influence of the underlying background vorticity gradient associated with a sloping
bottom. In particular, we will show that without baroclinic processes, our model
predicts stability. This point is important because it implies that the modes that are
described by this model are not simply baroclinically-modified instabilities of the
kind obtained in previous models, e.g. Killworth & Stern (1982), but represent a new
class of unstable baroclinic modes for buoyancy-driven coastal currents. Our model
is derived in a formal asymptotic expansion of the two-layer shallow water
equations.

Initially, it was thought that the theory developed by Swaters (1991) for mesoscale
gravity currents or coupled fronts on a sloping bottom could be simply ‘inverted’ to
provide a model that could describe the baroclinic instability of the surface density-
driven currents that we are interested in here. However, as it turns out, the
asymptotic limit examined in Swaters (1991) when applied to surface currents does
not yield a dynamically interesting system of equations from the point of view of the
instability problem. The underlying reason is that the dynamical processes that lead
to baroclinic instability are rather different between mesoscale bottom gravity
currents and surface buoyancy-driven currents. The instability described in Swaters
(1991) is gravitationally-induced due to the density contrast and the fact that the
coupled front is located directly on a sloping bottom leading to an offshore
‘slumping’. The instability can therefore be described as convective in nature and
thus purely baroclinic. For a surface buoyancy-driven current, the lighter fluid has
in some sense nowhere to rise to and thus the instability cannot be convective in
nature. Consequently, for the instability to proceed there must be a release of
available kinetic energy from the mean flow. However, for this release to occur the
advective nonlinear terms in the current momentum equations must be retained in
some limit. The Swaters (1991) theory is based on an asymptotic limit which neglects
these nonlinear terms entirely. For the present physical situation a new model has to
be developed from first principles. The theory that we develop here is similar in some

Phil. Trans. R. Soc. Lond. A (1993)
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298 Q. E. Swaters

respects to Flierl’s (1984) model for warm-core eddies and Cushman-Roisin’s (1986)
model for surface fronts.

The outline of this paper is as follows. In §2 the physical motivation for our scaling
of the two-layer shallow-water equations is presented and the asymptotic expansion
is introduced. In particular, a detailed discussion of the boundary conditions on an
outcropping is given. As well, in §2, the hamiltonian formulation of the model is
presented to set the stage for our subsequent general stability analyses. The general
form of the Casimir functionals is derived and we show how to obtain steady flows
as the solution to a variational problem for a suitably constrained hamiltonian.

In §3, the linear stability problem is studied in detail. We begin by deriving the
linear stability equations and boundary conditions and make some qualitative
remarks about the energetics of instability. We then turn to an analysis of the
normal-mode equations associated with along-shore steady flows. We present two
stability results for these flows and interpret these stability and instability conditions
in terms of the leading-order potential vorticity gradient associated with the density-
driven current.

In §4 we turn to presenting a linear and nonlinear stability analyses of steady
flows. To begin with we establish conditions for the formal stability (Holm et al. 1985)
and linear stability in the sense of Liapunov based on the non-canonical hamiltonian
formulation presented in §2. In the limit of steady along-shore flows, it is shown that
the formal stability conditions reduce to the normal-mode stability conditions
obtained in §3. After analysing the formal stability of general solutions, appropriate
convexity conditions are obtained that can establish the nonlinear stability in the
sense of Liapunov for general steady density-driven currents and fronts. We also
present a nonlinear saturation bound for the growth of disturbances in terms of a
potential enstrophy/energy norm on the initial perturbation. The paper is
summarized in §5.

2. Derivation of the baroclinic model and hamiltonian structure
(@) Evolution equations

The basic model we assume is a two-layer shallow-water system (both layers are
assumed hydrostatic homogeneous and incompressible) with a linearly sloping
bottom as depicted in figure 1. Assuming a rigid-lid, the dimensional equations of
motion can be written in the form

[0 +uf - V*+fy by x| ufF = —gVH*y*, (2.1a)
hi+V* - [ufh*] =0, (2.1b)
for the upper layer (one), and
[Ops +uf - V*+f é, x1ul = —V*(p*/p,), (2.2a)
R+ VE[uF (h* —s*y*—H)] = 0, (2.2b)

for the lower layer (two), with the reduced pressures #* and p* in layers one and two,
respectively, related via

p* =g 1" —g(pa—pi) K*, (2.3)
where we are also assuming p, > p, (stable stratification) where p, and p, are the

Phil. Trans. R. Soc. Lond. A (1993)
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fol2
y=¢(x,t)

h layer 1 y
(77: ulypl)

X

layer 2
(p,u,,p,)

Figure 1. General geometry of the two-layer model used in this paper.

densities of the upper and lower layers respectively. To focus attention on baroclinic
processes we have introduced the rigid-lid approximation into (2.15) and (2.2b).
Subscripts with respect to (z*,y*,¢*) indicate partial differentiation and V* = (0,.,
0,«). The Coriolis parameter f; is assumed constant. The dependent variables A* and
uf correspond to the total depth and eulerian velocity field in layer one respectively.
The dependent variables s* and uf correspond to the bottom slope parameter and the
eulerian velocity in layer two respectively.

There are many different dynamical limits that can be examined in the above set
of equations. The scaling that we introduce will implicitly assume that both layers
are, to leading order, in geostrophic balance in both the along-shore and offshore
direction. The eulerian velocity field in the lower layer is scaled, following Flierl
(1984), assuming that changes in relative vorticity are in balance with the production
of vorticity from vortex stretching. The topographic slope will be scaled assuming it
makes an equal contribution to the vorticity balance as these primary effects. The
scalings we adopt for the upper layer will imply a somewhat weaker nonlinearity in
the momentum equations compared with those presented in Flier]l (1984).

The non-dimensional (unasterisked) variables are given by

(@*,y*) = L(x,y), t*=1t/(f,0), 7*=&(fiL/g), }
uf = ‘ﬁfoLuv p* = p, 0fs LPp, ul = of,Lu,,

(2.4)

where the horizontal lengthscale is given by L = (¢’H&)/f, or equivalently
L = (g'hy/8)/f, where h, is a representative thickness scale for * and the reduced
gravity is given by ¢’ = (p,—p,)g9/p.. The parameter § will play the role of a vortex
stretching parameter and is given by

8= h,/H. (2.5a)

We also introduce a scaled slope parameter s which will measure the magnitude of the
background vorticity gradient associated with the sloping bottom compared with
baroclinic stretching and is given by

s = 8*L/hy. (2.5b)

Phil. Trans. R. Soc. Lond. A (1993)
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300 Q. EB. Swaters

Substitution of the scaling (2.4) and (2.5) into (2.1), (2.2) and (2.3) yields, after a
little algebra,

8u1t+é‘§u1'Vul+égxu1+V77 =0, (2.6a)
&h,+V - (u, h) =0, (2.6b)

80, +uy V)uy,+é,xu,+Vp =0, (2.7a)
V-u, = 6h, 40V - [uy(h—sy)], (2.7D)

7 =h+dp, (2.8)

where we have neglected terms of O(g’/g) in the hydrostatic relation (2.8) to be
consistent with the rigid-lid approximation. There are several remarks that should
be made about these scaled equations.

The key parameter in the asymptotic analysis that follows is . As mentioned
previously, this parameter will measure qualitatively the magnitude of the vortex
stretching in the lower layer induced by a perturbed upper layer. The parameter s
will be formally assumed as O(1). This means that the generation of relative vorticity
in the lower layer by baroclinic stretching will be balanced by the stabilizing
influence of the topographic vorticity gradient. We should compare the equations we
have obtained with analogous models obtained previously by others. The scaling we
adopted was motivated in large part by Flierl (1984) and Swaters (1991). Our non-
dimensionalization scheme can be interpreted as a slightly less nonlinear scaling than
that used in Flierl (1984). It can be shown that our u,(z, y, 1) field is O(8%) compared
with Flierl’s. On the other hand, our scalings correspond to a more nonlinear model
than that presented in Swaters (1991) for cold-core fronts. However, it is important
to add that while the model presented here is more nonlinear than the Swaters (1991)
theory, the earlier work also had the upper and lower layers interacting at O(1) and
not 0(8%) as in this model. As it turns out, the scalings introduced here are forced on
us if we want to construct a model that incorporates mean flow kinetic energy
release, baroclinic vortex tube stretching and a topographic vorticity gradient within
a context of O(1) isopycnal deflections. In the barotropic limit corresponding to an
infinitely deep motionless lower layer, the model reduces to only (2.6a, b) and (2.8)
with p = 0. If we interpret J as a non-dimensional Rossby number, this reduced
model is very similar to the governing equations presented by Cushman-Roisin
(1986). One final aspect of the non-dimensionalizations that is worth pointing out is
that our scalings correspond to intermediate lengthscale dynamics as described by
Charney & Flierl (1981). The lengthscale adopted in (2.4) is O(67%) times the internal
deformation radius associated with the upper layer. Consequently, under a weakly
baroclinic limit, i.e. 0 < § < 1,

(' bt/ fy < L < (g H)H/f,.

The weakly baroclinic limit is physically relevant. Typically values on a continental
shelf might be s* ~ 1.2mkm™, h, ~ 3040 m, H ~ 200-300 m and (¢ H)/f, &
15 km suggesting L ~ 10 km, § ® 2x 1072 and s = 0.4; see also the discussion in
Swaters & Flierl (1991) and Swaters (1991).

To examine the small § limit in (2.6), (2.7) and (2.8), we proceed with a
straightforward asymptotic expansion of the form

(0, 1o p, thy, ) ~ (3, B, p ) 830, p, 1y, 1,) 4+ O(0). (2.9)
The details of the expansion for the slope water equations are straightforward when

Phil. Trans. R. Soc. Lond. A (1993)
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we observe that the location of the parameter § in (2.7, b) occurs in such a way that
the dynamics is quasigeostrophic to O(J). Hence the evolution of the leading order
flow is determined by

(Ap® +hO)—sp® +J (0, Ap® +4®) = 0, (2.100)

where A = 0%/02*+0%/0y* and J(4,B) = A,B,—A,B,. The leading order velocity
field is geostrophically determined and thus given by

u®d =é;x Vp©. (2.100)

The details of the expansion for the frontal flow are slightly more subtle. The O(1)
and O(&%) problems associated with (2.6) and (2.8) are given by, respectively,

u® =é,x VA, V- [uPh®]=0, 5O =hr, (2.11a—c)
by xu®d +Vy® = — (- V)ul®, (2.12a)

WO + V- [u®hD + uMp©] = 0, (2.120)

g ® = h® 4 p©, (2.12¢)

The equations (2.11) are not enough to specify the O(1) solution since substitution of
(2.11a) into (2.11b) will automatically be satisfied for all sufficiently smooth A©.
Note, however, that no restriction is made on the magnitude of 2. As well, to
leading order, it is important to note that 3 is decoupled from p©®.

Substitution of (2.11a) into (2.12a) leads to, after a little algebra,

ud = é, x Vo + J(VA®, h©®), (2.13)

The first term on the right-hand side of (2.13) is simply the perturbation geostrophic
flow and the second term is the contribution to u¥ from the nonlinear momentum
terms in (2.12a). Further substitution of (2.11a) and (2.13) into (2.125), after
eliminating 7@ in favour of AV and p©® via (2.12¢), yields

hgo) + J(p(l)) + h(O)Ah(O) +%Vh(0) . Vh(O), h(l))) = 0. (2 14)

The pair of equations (2.10a) and (2.14) determine the coupled evolution of 2 and
p©. The leading order velocity field will be given by (2.10b) and (2.11a), for the slope
water and frontal layer, respectively, and the leading dynamic pressure in the frontal
layer will be given by (2.11¢). The barotropic limit of (2.14), corresponding to letting
p® —0, is identical to the Cushman-Roisin (1986) frontal model restricted to a
f-plane. (I am aware that a model somewhat similar to (2.10a) and (2.14) has been
independently obtained by Cushman-Roisin et al. (1992) in a somewhat different
context appropriate for a midlatitude f-plane and has been used to study aspects of
geostrophic turbulence (Tang & Cushman-Roisin 1992).)

(b) Boundary conditions

In addition to appropriate boundary conditions on the coast and for the distant
offshore, dynamic and kinematic conditions are required for outcroppings (i.e. places
where h(z,,t) = 0). The physical problem we wish to examine here is depicted in
figure 1, wherein the fluid that is immediately adjacent to the coast is slope water (in
contrast to the problem examined by Killworth and Stern). To leading order the no
normal flow condition is simply

p® =0 on y=-B, (2.15a)
Phil. Trans. R. Soc. Lond. A (1993)
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and for offshore we require a bounded velocity field

[Vp©| < oo,

|Vh(°)|<oo,} as Yy — 00, (2.15b, ¢)

(although for non-leaky modes (2.15b) can be replaced with p® -0 and A©® -0 as
Yy —> ).

The boundary conditions for the outcroppings are obtained as follows. Suppose the
projection on z* = 0 of an outcropping of the front is dimensionally given by the
curve y* = ¢*(x* t*). If we introduce the scalings (2.4) and define ¢(x,t) = $*(x*,
t*)/L, the non-dimensional kinematic condition can be written in the form

S, tu p,=v, on y=d,tb), (2.16a)
and the frontal height satisfies
h=0 on y=d¢(t). (2.160)
Inserting the expansion (2.9) together with
G~ PO+ 5D 4 (2.17)
into (2.16) yields the O(1) conditions
W) +hPpP =0, hO =0, (2.18a, b)
on y = ¢O(x, t).
The O(8% boundary conditions take the form
B+ U? GO+ uD D+ OGO = o+ GO0, @.190)
A+ BO D = 0, (2.19b)

on y = ¢©(x,t). Substitution of (2.13) into (2.19a) and eliminating 4 (x, ¢, t) using
(2.12¢) and ¢P(x, t) using (2.19a) leads to

h;0)¢50) = J(p(O)a h(o)) + Vh(o) . J(Vh(o)’ h(O)), (220)

on y = ¢©(x,t). Assuming that we can take the limit y — ¢(x, ) smoothly in (2.14),
allows (2.20) to simplify to

OGO+ 1O =0, on y=¢O(x,t). (2.21)

In addition to these conditions, we also require that the slope-water pressure and
normal mass flux be continuous across y = ¢©(z, ¢).

The model equations (2.10a) and (2.14) together with the boundary conditions
(2.15a,b), (2.18) and (2.21) possess an exact nonlinear along shelf-solution of the form

Y

WO = hy(y), p© = pyly) = —f U,(€) dé, (2.22a, b)

0
O = aq, (2.23)

where a is constant in (2.23), and where it is assumed that Ay(a) = 0. In the case of
multiple outeroppings, such as a coupled front, (2.23) would be replaced with a set
of similar relations, one for each outcrop location. Because we are free to choose the
origin of the coordinate system where we wish, we can choose @ = 0 in (2.23), so that
hy = 0 in the region —B < y < 0 (see figure 1).

Phil. Trans. R. Soc. Lond. A (1993)
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(¢) Hamiltonian formulation, Casimirs and general steady solutions

Over the last several years infinite-dimensional hamiltonian theory has been
applied to fluid mechanics in order to make very general and deep statements about
the underlying structure and stability of fluid flows (see, for example, Arnol’d 1969;
Olver 1982; Benjamin 1984; Holm et al. 1985, among many others); a readable
review appropriate to GFD can be found in Shepherd (1990). In this section we show
how the model equations just derived can be put in non-canonical hamiltonian form.
We then compute the appropriate Poisson bracket for our model and obtain the
family of Casimir functionals for the dynamics. Finally, we show how to construct a
constrained hamiltonian functional so that general steady solutions of the model will
satisfy the first-order necessary conditions for extremizing the constrained
hamiltonian. These results will be needed in §4 where we generalize the linear
stability theorems obtained in §3 for along-shelf steady shear-flows of the form (2.22)
and (2.23) to more general steady solutions, and to a nonlinear stability analysis.

The model together with boundary and matching conditions derived in §2 can be
written in the slightly generalized form (dropping the (0)-superscript)

(Ap+h),—sp,+J(p,Ap+h) =0, (2.24)
hy+J(p+hAh+3Vh-Vh, h) =0, (2.25)
where the two-dimensional spatial domain associated with p(x, y,¢) will be abstractly
denoted R = R? and the two-dimensional frontal region associated with A(x,y,t) > 0

will be denoted ¥ < R. The boundary of B will be denoted 0. The outcropping will
occur on the boundary of F which will be denoted 0F or equivalently by y = ¢(x, ¢)

as in §2.
The boundary conditions on p(x,y,t) therefore take the form
dp/0s=0 on OR, (2.26)
where s is arclength along 0R, and the conservation of net circulation
d
—® Vp-nds=0, (2.27)
dt Jor

where 7 is the unit outward normal on OR in the case where R is bounded. In the case
where R is the half-plane as discussed in §2, OR is not a closed curve and hence (2.27)
plays no role and (2.26) reduces to (2.15a) for the coast. On any outeropping

h(z, p(x,1),t) = 0, (2.28)

It is important to note that the boundary conditions (2.18a) and (2.21) play no role
in the dynamics since under the assumption that A(x, y, t) is formally differentiable as
(@, y) - OF it follows from (2.28) that (2.18a) and (2.21) automatically hold. This will
not lead to an ill-posed mathematical problem since the solutions will be uniquely
determined by demanding that Vp be continuous across y = ¢(«,¢) (in the context of
the linear problem for cold-core fronts see how Swaters (1991) resolved this issue).
This fact has the very important implication that we can avoid all of the major
technical difficulties associated with hamiltonian formulations of free-boundary
problems (Lewis et al. 1986).
A system of partial differential equations is hamiltonian if it can be written in the
form (Olver 1982)
q,=206H/dq, (2.29)

Phil. Trans. R. Soc. Lond. A (1993)
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304 G. K. Swaters

where ¢ = (¢,,¢5, -..,¢,)" is a column vector of n dependent variables, H(q) is the
hamiltonian functional (conserved but not necessarily positive definite or even the
area-integrated energy; although it often is) and 6/1/6q are the Euler derivatives of
H with respect to ¢, Z is a skew-symmetric matrix of differential operators satisfying

(*,2")=—(Dx*,"), (2.30)

where (%, -) is the appropriate inner product for the phase space in question, and 2
must satisfy the Jacobi identity as well.

Theorem 2.1. The equations (2.24) and (2.25) can be put into the following
hamiltonian form. Define q = (q,,q,)" where

¢, =Ap+h, q,=h, (2.31a, b)
with the hamailtonian given by
H = ;Jf pr‘prdxdy—ljj th-Vhdxdy—A% Vp-nds, (2.32)
2)Jr 2)Jr . oR

where A ts the value of p on OR. In the case where R is simply-connected we may set
A = 0. In the case where R is not simply-connected the last term is to be replaced with a sum
over all the closed boundary curves. In the case where R is unbounded the last integral
must be interpreted via an appropriate limit argument. The matrix 9 = [D;] is given by

‘9 8z1 8]1‘]( ‘9ya*)+82i62]"](g2>*)’ (233)
where J;; 1is the Kronecker delta function for 1 <1,j <2

To show that H is conserved we formally compute 0H/0t. Kelvin’s circulation
theorem (2.27) eliminates the last term in (2.32). The remaining terms can be shown
to vanish by direct substitution of (2.24) and (2.25) into 0H /03¢, and integrating by
parts exploiting the boundary conditions (2.28) and the smoothness of p(x, y,?).

The variational derivatives are obtained from the first variation of H given by

6H=Jf Vp'VSpdxdy—ff 5k%Vh'Vh+ka'VSkdxdy——/\jg n-Vopds,
R P

dR

(2.34)

where the contribution associated with §F vanishes since A = 0 on 0F. Integrating the
first two integrals by parts and exploiting the boundary conditions leads to

0H = JJ p)Adp dx dy+fj (hAR+3VE-Vh)Shdx dy,
or equivalently,

SH = Jf ) (Adp -+ dh) dxdy+fj (hAR+3VE-Vh+p)dhdxdy, (2.35)
where it is implicitly understood that A is only non-zero in the domain F in the first
integral. Since 8¢, = Adp+ 6k and 8¢, = dh, it follows from (2.35) that

31 /dq = (—p, hAh+iVh Vi +p)T. (2.36)
Substitution of (2.36) into (2.29) yields
(Ap+h), = —=J(Ap+h—sy, =p),

hy =J(h, ANh+3Vh-Vh+p),
Phil. Trans. R. Soc. Lond. A (1993)
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which can be rearranged into (2.24) and (2.25) thus verifying that the dynamiecs is
reproduced by (2.29) and (2.32).

We can equivalently cast the dynamics using a Poisson bracket (Benjamin 1984)
defined formally through

(F,H = (3F /59,9 5H/3q), (2.37a)

where # and # are arbitrary functionals with densities depending on g and where
the inner product is simply given by

(fg)= f (/1911 /29, dedy.

In terms of the Poisson bracket (2.37a), the evolution of the functional F is
determined by

dF /dt = [F,H]. (2.37b)
Thus the dynamics can be re-written as
q,=q.H], (2.37¢)

provided we interpret (2.37¢) in component form and

= ff&(x—x’)&(y—y’)q(x’,y’,t) da’ dy’. (2.37d)

The Casimir functionals are defined to be the family of invariants which span the
kernel of the Poisson bracket. In canonical hamiltonian dynamics, in which & is
non-singular, the Casimirs are trivial. However, in our situation & is singular and
thus the Casimirs are non-trivial. If we define C'= C(q) to be a Casimir functional,

then
0=[F,C]1= (0F /dq,25C/dq), (2.38)
where & (q) is an arbitrary functional; that is, they are the solutions of
238C/dq =0,
or equivalently,
J(q,—sy,8C/dq,) =0, J(q,,86C/3q,) = 0. (2.39a, b)

The general solution to (2.39) is given by

JJ (Ap+h—sy) dxdy+fj (k) dady, (2.40)

where @, and @, are arbitrary functions of the potential vorticity and frontal
thickness, respectively, and where it is implicitly understood that A is non-zero only
in domain F in the first integral.

We can use the Casimirs to show that arbitrary steady solutions of (2.24) and
(2.25) will satisfy the first-order necessary conditions for a conditional extremal of
the hamiltonian H. It follows from (2.24) and (2.25) that general steady solutions
given by p = p,(x,y) and h = hy(x,y) satisfy

J (Do, Apo+hy—sy) =0,

J(po+hg Mg +3Vhy Vg, hy) = 0,
Phil. Trans. R. Soc. Lond. A (1993)
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306 G. K. Swaters
which integrate to
Py = Fy(Apy+hy—sy), (2.41)
Do+ log Aly+3Vhy Vi = Fy(hy), (2.42)

where F, and F, are suitably smooth arbitrary functions with respect to their
respective arguments. If we consider the constrained hamiltonian

H(p,h) = H(p, h)+C(p, h), (2.43)

where H is given by (2.32) and C by (2.40), it follows that the first variation is given
by

0H = — ff pAdp dx dy + Jf (hAR+L1VE-Vh) 8k dx dy
R P

+ JJ (Adp +0h) D] dady + Jf 0hdy dx dy,
R F
where @] = d®;/d(Ap+h—sy) and @, = dD,/dh. This expression can be rewritten as

H(p,h) = JJ D, —p) (Adp+ 6h) da dy+JJ D, +p+hAh+3Vh-Vh)dhdxdy.

(2.44)
Hence we see that .
OH (py, hy) = 0, (2.45)
provided we choose the Casimir density as
'Ap+h—sy h
o= [ "rew o= rew (2464, )

where F; and F, are given by (2.41) and (2.42) respectively. To summarize, arbitrary
steady solutions to (2.24) and (2.25) defined through the relations (2.41) and (2.42)
satisfy the first-order necessary condition (2.45) for extremizing the constrained
hamiltonian (2.43) provided the Casimir (2.40) is chosen to satisfy (2.46). We can use
the constrained hamiltonian  to derive conditions for the linear stability of
arbitrary steady solutions and a generalization of  to examine the nonlinear
stability of these steady solutions. This is done in §4. Before doing this however, it
is very useful to study the general linear stability characteristics of steady density-
driven currents and fronts which have an along-shore configuration. In practice, it
is to be expected that this class of steady solutions will be among the most useful
from the point of view of applying our theory to density-driven currents and fronts
of coastal oceanographic interest.

3. Linear stability problem and general stability characteristics
(@) Linear stability equations and boundary conditions

In this section we want to examine in some detail the linear stability properties
associated with steady along-shore solutions given by (2.22) and (2.23). The results
of a linear stability analysis for these along-shore solutions can be very useful with
respect to motivating a general linear stability analysis and leading the way to a
finite-amplitude stability theory which requires the results of the hamiltonian
structure developed in the last section.

Phil. Trans. R. Soc. Lond. A (1993)
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Stability of coastal currents 307

Figure 2. Geometry of the linear instability problem examined in §3.

To examine the linear stability problem for the along-shore solutions we assume
that

b= ho(y)+h(x,9,t), p=pyy)+pxuyt), ¢=a+¢ (xt), (3.lac)

wherea = O ora = D (if D < o0 ; see figure 2 for the geometry assumed in this section)
and substitute into the model equations and linearize about the Ay (y) and p,(y).

In the frontal region 0 <y < D, the stability problem takes the form (after
dropping the prime notation for the perturbation fields)

Foy ho Dby~ (Pgy) 2l + Uy — (hg Brgyy) y 1 b+ by~ by p, = 0, (3.2a)
In the non-frontal regions —B <y <0 and D <y < o0, the stability problem

takes the form
(0, +Uy0,) Ap—(Uyyy +8) p, = 0. (3.3)

Equation (3.3) is simply a Rayleigh stability equation including the effects of a
linearly sloping bottom.

The linearized and Taylor-expanded boundary conditions are given as follows.
From (2.18a, b) we have

hytho, ¢, =0, hthy,¢d=0, (3.4a,b)
on y = 0 respectively. From (2.21) we have
hy+ hoy ¢ = 0, (3.4¢)
on y = 0. From (2.15a, b) we have
p,=0 on y=-—BbB, (3.4d)
%ﬁ: : z:} as - 00, (3.4e,f)

(where (3.4f) is needed only if D = c0) respectively. We can see immediately that
(3.4a—c) are degenerate in the sense that if (3.4b) holds on y = 0, it immediately
follows that for sufficiently smooth A(x,t) and ¢(zx,t), (3.4a) and (3.4¢) also hold since
hy, is only a function of the cross-shelf coordinate y. This means that the boundary

Phil. Trans. R. Soc. Lond. A (1993)
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308 G. E. Swaters

conditions (3.4a—c) are not enough to uniquely specify a solution to (3.2) and (3.3)
together with the remaining boundary conditions (3.4d—f). This apparent difficulty
is obviated by the condition that the pressure and normal mass flux in the slope
water must be continuous across y = 0.

(b) Perturbation energetics

We can obtain some general qualitative information on the nature of the
instabilities by examining an averaged energy equation associated with (3.2a). If
(3.2a) is multiplied through by %(x, y,t) and the result integrated over 0 < y < D and
0 < x < A where A is the along-shelf wavelength of the perturbation and where the
steady current is assumed to occupy the region y € (0, D) where 0 < D < o0, it follows
after repeated integration by parts, that

o (P D D
o] sy == [t a0, (3.50)
where 7 is the along-shore averaged perturbation Reynolds stress given by 7=
holhy b,y where ((x)) is defined as

A
(%)) = /\‘IJ () de. (3.6)

0
In the ‘pure’ barotropic problem (i.e. p = 0 in (3.5)), instability can only occur if
7 is on average negatively correlated with the frontal vorticity /4,,,. That is, of course,
just the classical shear flow instability result. However, as it turns out, there is no
linear instability in the pure barotropic problem. This can be easily seen as follows.
The barotropic limit of the linear instability equations (3.2) corresponds to setting

U,=p=0in (3.2a) and ignoring (3.2b) altogether, that is,

hy— (ho gy )y oy (Poyy) 2l + by by Db, = 0.

It can be shown that this equation possesses the positive-definite quadratic
invariant "
L= f ho(hoy)*CV (B gy ) - V(R b)) dy.

0
(We show in §4 that —L is the barotropic limit of the second variation of the
constrained hamiltonian (2.43) evaluated for the steady solution (2.22a); see (4.19).)
Since 0L /0t = 0, it follows that L(¢) = L(0) > 0 and consequently if (0) is bounded
so is L(t) and A(x,y,t) for all ¢ > 0 thus establishing linear stability in the sense of
Liapunov for the barotropic problem with respect to the norm |A||> = L. This is an
important result because it implies that baroclinic coupling in this model is
necessary for any instability to occur.

Returning now back to (3.5a), if baroclinic processes dominate, then it follows
that instability can only occur if (Ap,) is negatively correlated, on average, with .
It is possible to give a heuristic physical interpretation to the above baroclinic
instability condition as follows. Because the flow in the slope-water is geostrophically,
balanced, p, is simply the cross-shelf perturbation velocity. We can interpret a
positive A as a warm anomaly in the underlying slope water. Thus, qualitatively,
baroclinic instability can only occur if, on average, the transport of warm anomalies
in the slope water is in the onshore direction if Ay, > 0 and in the offshore direction
it Ay, < 0. These conditions are exactly analogous to those presented in Swaters
(1991).
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(¢) The along-front normal mode equations

In the remainder of this section we focus attention on normal mode instabilities of
the form

h = h(y)exp [ik(x—ct)] +c.c., (3.7a)
p = P(y) exp [ik(x—ct)]+c.c., (3.7b)
¢ = Gexp[ikx—ct)]+c.c., (3.7¢)

where k& and ¢ are the along-front wavenumber and complex phase speed,
respectively, and c.c. denotes complex conjugate. Substitution of (3.7) into (3.2),
(3.3) and (3.4) yields the problem (after dropping the tilde)

bgy bg Py + (hoy ) ey — [KPhg Bgy 4 (Bg Fogyy,y) ¢ — UL Bt by p = 0, (3.8a)
oy + =+ Uiy~ Uy ) Uy 1]70+h =0, (3.80)
for 0 <y < D and the problem
yy— B Uy, +3) (Uy—e) M p = 0, (3.8¢)
in —B<y<0andD <y < . The boundary conditions reduce to
h+hy,¢=0, on y=0,D, p(—B)=0, (3.9a, b)
[pl; Ipy| < 0,
B[y < oo, as  y—> 00, (3.9¢, d)

where (3.9d) is needed if D = 00. The conditions that the pressure and normal mass
flux in the slope water be continuous across y = 0 are given by

[(c—=Uy)py,+Uypl =0, [pU,—c)']1=0, (3.9¢, f)

ony = 0, where [(*)] (y = 0) = (x) (0*)— (%) (07). Of course, (3.9) must also hold at any
other location where it may happen that Uy(y) or U,,(y) are discontinuous. In
addition to these matching conditions, certain regularity conditions will have to be
imposed on A(y) at an outcropping since (3.8a) is singular there. These conditions are
derived in §3e).

(d) General results for the normal modes

In contrast to the theory presented in Swaters (1991), we have not been able to
obtain many rigorous general results for the normal-mode equations given here.
However, as it turns out, it is possible to explicitly obtain two relatively simple
stability conditions for the normal modes.

The most convenient way to obtain these results is to work with a new dependent
variable in place of &(y) that casts (3.8¢, b) into self-adjoint form. To that end define
F(y) through

h(y) = hoy, F(y). (3.10)
This transformation will certainly be nonsingular where 4, # 0. However, we will
need h and %, to be finite at any location where h, —O because continuity

requirements on the mass transports and pressure in the frontal layer. Thus the
regularity of F(y) is somewhat constrained.
Substitution of (3.10) into (3.8a, b) leads to

[Pg(hoy )2, 1, — (kPhg by + ¢ — Up) hoy B+ hoy p = 0, (3.11a)
— 2+ (54 Uy —hoy) (Uy—¢) ] p+ g F = 0. (3.11b)
Phil. Trans. R. Soc. Lond. A (1993)
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Multiplying the complex-conjugate of (3.11a) with /" and integrating over the frontal
region yields the balance
"D "D
f ho(hoy)?* [1F,* + K [F*] + (¢* = Uy) b, |F|* dy = J hoyp*Fdy, — (3.12a)
0 0
where p* is the complex-conjugate of p(y). Similarly, multiplying (3.11b) and (3.8¢)
by p*, integrating over (—B, o) and adding together yields the balance

f Dyl 4 [ (Uy—¢*) (s-+ Upyy) 1 U — ] [pl* dy
B

D

D
+f <c*Uo>hOy|UO—c|2|p|2dy=f hoy Fp*dy.  (3.120)

0 0

If we eliminate the right-hand side of (3.1256) using (3.12a), we obtain

f g2+ (K24 (Uy— ) (s-+ Unyy) 1 U — 2] [pl2 dy
B

D D
+j (c*—=U,) hoy on_cl_2 |p|2dy = f I hoy[le|2+ k? |F|2] +(c*— Uo) hoy |F|2d?/-

0 0

(3.13)

The imaginary part of (3.13) is given by (after substituting ¢ = ¢y +ic;)

D 00
o1 {J hoy |FI? d?/+f [8+ Upyy = Ol 11Uy — | [pl* dy} =0, (3.14)
0 -B
where 6 = 1 for y€(0,D) and 8 = 0 for ye (—B,0) U (D, ). Clearly, if {x} % 0 for all
modal solutions, then ¢; =0 so we have neutral stability. There are two easily
identifiable stability theorems given as follows.

Theorem 3.1. If h, > 0 for all ye(0,D) (i.e. a monotonic frontal depth profile) and
0 < hy, < U,,,+s for all ye (—B, o0), then the front is neutrally stable.

These conditions ensure that the quantity inside the curly brackets is positive
definite for all non-trivial solutions, thus implying ¢; = 0. In the pure baroclinic limit
for which U, = 0, these two conditions reduce to the single stability condition

0 <hy, <s,

for all y€(0,D). Hence in the pure baroclinic limit, a necessary condition for
instability is the existence of at least one y-value for which either A,, < 0 or A, > s.
The latter condition shows the stabilizing influence of the bottom slope for a
monotonic frontal profile satisfying h,, > 0 everywhere. Even if s > &, instability
has the possibility of occurring provided Ay, < 0 somewhere. Physically, this can
oceur for a coupled-front configuration where y(y) contains two outcroppings. On
the offshore side of such a current it follows A, < 0 (see Swaters 1991). This necessary
condition for instability can be easily interpreted in terms of the potential vorticity
of the front. The non-dimensional potential vorticity of the front is given by PV =
(8:Vxu, +1)/h. In the limit as 60 we have PV ~ 1/h® so that for the mean flow
oy, < 0= (PV), ~ —hy,/h} > 0. Therefore a necessary condition for instability in the
situation where s > A, is that the leading order potential vorticity associated with
the front must increase in the offshore direction for some values of y.

Phil. Trans. R. Soc. Lond. A (1993)
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Theorem 3.2. If hy, < 0 for all ye(0,D) and Uy, +s < hy, <0 for all ye(—B, o),
then the front is neutrally stable.

These conditions will imply that the quantity inside the curly brackets will be
negative definite for all non-trivial solutions, thus implying ¢; = 0. It is physically
realistic to have a frontal profile satisfying A, < 0. For example, consider a
buoyancy-driven front along a coast which has maximum 4, on the coast and for
which A, monotonically decreases to zero offshore. Another important point to
make about this stability condition is that it only makes sense if a background
mean flow Uy(y) is present with a sufficiently negative vorticity gradient since if
ever Uy, +s > 0 (such as in the pure baroclinic limit U, = 0), it will be impossible
to satisfy the second of the above two conditions.

It is important to understand that the above stability theorems do not imply that
a zero in the cross-shelf potential vorticity gradients are necessary for instability. For
example, (3.14) can be satisfied in principle if the leading order (as § - 0) potential
vorticity gradients in each layer given by

(PVl)y ~ _hoy/k(z)’ (PVz)y ~ _( 0yy+8y_h0y)»

are of constant but differing sign. This is precisely analogous to the baroclinic
instability result obtained for two-layer quasi-geostrophic flow (Pedlosky 1987,
§7.10) in which instability is possible when the potential vorticity gradients in the
two layers are of opposite sign.

It was shown in §3b, that in the barotropic limit (i.e. U, = p = 0), along-shore
steady-solutions are linearly stable. In the context of the normal modes this means,
of course, that ¢; = 0. It is straightforward to show that this result indeed follows
from (3.13). The real and imaginary parts of (3.13) in the barotropic limit are given
by, respectively,

D
f oty HLUE 2+ K22+ g g PP dy = 0, (3.154)

0
o { f hoyIF? dy} = 0. (3.15b)
0

Assuming instability occurs, it follows from (3.15b) that

D
f ho |FI?dy = 0,

0

which when substituted into (3.15a) implies

f ol PIIE, 2+ E4FI#] dy = 0,
0

which is clearly only satisfied if F = 0 everywhere (the case /4, = 0 being physically
uninteresting). Consequently we conclude that there can be no non-trivial unstable
solutions to the barotropic problem.

It follows from (3.15a) that the real phase for these stable barotropic modes
satisfies

D D
op = — j holhoy ) (F, 2+ B2 %) dy / J hoy |12 dy. (3.16)

0 0

Phil. Trans. R. Soc. Lond. A (1993)
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Hence the sign of cy is determined by the sign of the denominator in (3.16). In
particular, for a monotonic frontal profile for which %y, > 0, this means cg < 0. For
example, the linear barotropic stability problem for the ‘wedge’ front

ho(y) = oy, (3.17)

where o > 0 and y € (0, 00) was solved by Cushman-Roisin (1986). The solutions for
h(y) are proportional to exp (—ky) L, (2ky) with the dispersion relation

g =—(2n+1)a?k, (3.18)
where L, (*) is a Laguerre polynomial of integer order n = 0.

(e) Matching conditions for h(y) when hy, and/or hy,, are discontinuous

In practice there are going to be very few smoothly varying frontal profiles A,(y)
for which the stability problem (3.8) can be solved exactly owing to the fact that A,
appears quadratically in many places in the equations. One way of reducing the
problem to a more tractable level is to examine the stability characteristics for a
substantially idealized frontal shape in which %, is modelled with a completely
continuous profile which has regions of differing slopes. Similar procedures have been
used frequently in geophysical fluid dynamics to study the stability of various flows
(see, for example, LeBlond & Mysak 1978, ch. 7; Drazin & Reid 1981). The solution
to the normal mode equations is obtained in each individual region where f, and &,
are both continuous and then the individual solutions are ‘patched’ together using
jump conditions which express the continuity of pressure and normal mass flux. In
this section we derive these continuity conditions. These constraints will also be
useful in determining the required regularity conditions on % and 4, at the
outcropping where 4, = 0.

Suppose that along the line y = y that A, or k,,, possess a finite discontinuity. The
condition for pressure continuity in the frontal layer can be derived by integrating
(3.8a) over (y—e, y+e) with respect to y and letting ¢ 0*. From (3.8a) we obtain
(after integrating by parts)

y+e
(ho gy oy — hg gy RIS+ j hoy 0 — (k*hg by +c—Uy) hdy = 0. (3.19)

v—e€
Assuming that the integrand in (3.19) is bounded will imply that, as 0%, the
contribution from the integral vanishes and thus pressure continuity is equivalent to

[fog oy by —Pg gy Bl = 0O (3.20)
on y = v, i.e. the quantity h,(h, &, —h,, h) is continuous across y = y.

To obtain a condition for mass flux continuity, we modify an argument presented
in LeBlond & Mysak (1978, §45) for barotropic instability jump conditions. We
replace the upper integration limits in (3.19) with y. The result can be written in the

form

Y
hohoyhy-h0hoyyh—ﬁ(e)+f hoy  — (k*hg by +c—Uy,) hdy, (3.21)
where e
g;(e) = ho(hoy hu—how/ h)ly=yfe'

Because each individual term is assumed bounded it follows |Z (¢)] < co. If (3.21) is
multiplied through by (,,)™® the result can be put into the form

d[ A Y
|~ 7@ 2 B [ o= Wby e~ hay. (322
dy | Ay, e
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If (3.22) is now integrated over (y—4, y+46), and the double limit ¢, § 0 taken, it
follows that the integrals associated with the last two terms and the final integral
obtained from the integration by parts of the first term vanish due to the assumed
boundedness of the integrands. From the first term we obtain simply

[Ahy/hgy] = 0, (3.23)

on y =v. It is possible to interpret the continuity conditions (3.20) and (3.23) as
‘low-frequency’ limits of (3.9¢) and (3.9f), respectively, where the role of A, can be
interpreted as acting like a ‘density ’ similar to how the background density appears
in the continuity conditions for the Taylor-Goldstein equation (see Drazin & Reid
1981).

In the case where A, is continuous across and non-zero on y = vy, then (3.20) and
(3.23) reduce to simply

gy by —boyy B = 0, [h/hg,] = 0, (3.24a, b)

oyy

respectively. On an outcrop, where formally A, =0, and %, and A
discontinuous, (3.20) and (3.23) should be interpreted as

oyy are clearly

lim Ay (hg, by —hg,, h) = 0, limM =0, (2.25a, b)

Y-y y-y "oy
where the limit path is understood to be in the frontal region. The conditions
(3.25a,b) places certain regularity constraints on A(y) and %, (y) at an outerop. These
constraints will certainly be satisfied if we insist that - and h, remain bounded
functions.

4. Linear and nonlinear stability of arbitrary steady solutions
(@) Formal stability
We can use the hamiltonian theory developed in §3 to generate stability conditions
for arbitrary steady solutions to (2.24) and (2.25). It is well known (see, for example,
Holm et al. 1985) that establishing sufficient conditions on the Casimir C(p, 2) (2.40)
so that .
8H (py, ho) = 0, (4.1)

82H (p,, hy)  is definite, (4.2)

for all perturbations 84 and 3p where p(x,y) and hy(x,y) are the general steady
solutions defined through (2.41) and (2.42) proves the linear stability in the sense of
Liapunov (thus excluding both algebraic and modal instability). Holm et al. (1985)
have termed this sense of stability formal stabulity.

However, unlike in finite-dimensional, the conditions (4.1) and (4.2) are not
sufficient to prove nonlinear stability because in infinite-dimensions (4.1) and (4.2)
are not sufficient to establish that £ (p, k) is strictly convex in an open neighbourhood
of (p,, hy) in the relevant phase space. This is a topological result which is closely
related to the fact that in Hilbert space the unit sphere is not compact. (In fact it is
this technical issue which Arnol’d (1969) corrects as compared with the stability
result established in Arnol’d (1965) for plane flow; for further discussion see KEbin &
Marsden (1970) and Ball & Marsden (1984).)

To establish formal stability we examine the second variation of H given by (2.43)
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314 G. E. Swaters

where the Casimir €' is determined by (2.46) in order that the first order necessary
condition (4.1) is satisfied for the general steady solutions defined by (2.41) and
(2.42). We find that 6*H(p,, h,) is given by

S (py, o) = H V(5p)- V(5p) + Fio(Adp + 5h)? d dy
R

+” (Ahg—Fp) (8h)2—hy V(8h)-V(8h) dz dy, (4.3)
F

where Fy=dF,(Ap+h—sy)/d(Ap+h—sy) and Fy, = dF,(h)/dh evaluated for
(p, k) = (py, hy) determined by (2.41) and (2.42). Note that we have reintroduced the
notation where R is the spatial region occupied by layer 2 and F is the spatial region
occupied by layer 1 as defined in §2c¢. Tedious but straightforward computation
shows that 826 (p,, h,) is conserved by the linearized dynamics associated with (2.24)
and (2.25) given by

(Adp +8h),+ J[Apy+ hy— sy, F1o(Adp+ k) —dp] = 0,
Oh,+J(dp+0h Ahy+ hy ASh+VhyV 3h—F dh, hy) = 0.

Formal stability is established if appropriate conditions on the steady state
solutions can be found ensuring that 82/ (p,, h,) is negative or positive definite for all
suitably-smooth perturbations dp and &k satisfying the appropriate boundary
conditions. It turns out that, in general, conditions cannot be found on F, and F,
that will guarantee that 8 (p,, h,) > 0 due to some elementary functional analysis.
The argument is as follows. To show positive definiteness ultimately one needs an
inequality of the form

” ho V(8h)-V(8h) da dy < GJ J (8h)? da dy,
F F

for some positive finite constant € in order to bound the second term in the integrand
of the second integral in (4.3) by the first term. However, no finite constant exists
since the operator L defined through

Lp = =V (h, Vo),

is positive, self-adjoint and unbounded (since k, >0 in the interior of F).
Consequently, the eigenvalues of L form a positive real sequence whose only limit
point is at infinity (for @ functions which satisty appropriate boundary conditions on
OF ; namely @(OF) = 0if 2y(OF) # O or [¢p(OF)| < o0 if hy(OF) = 0; see Zauderer (1989)).

In fact, one can show rather easily that except for a contribution associated with
Polx,y) the second integral in (4.3) is negative-definite for all dk. If (2.42) is
differentiated with respect to y, one obtains

—Upy+hoy Ahg+hy Ahgy, +VhyVhy, = Fyohy,, (4.4)
which we note is valid for general U;= Uj(x,y) and h, = hy(z,y). Using this
expression to eliminate Iy allows the second integral in (4.3) to be rewritten in the
form

j j [Ua/hoy—to Mgy /hoy— Vo Vhoy/hg, ] (Sh)2—hy V(Sh) - V(3h) da dy,
F
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which can be further rewritten in the form
[ [ 0ty @112tV (@) 9180y sy
F
Thus an alternate representation for 82H (p,, k,) is given by

82H(700, JJ (3p)-V(dp)+ Fi,(Adp+6h)® da dy

+ JJ (Up/ gy) (8h)2 —hy(hy,)? V(8h/hy,) V(8h/ hy,) dxdy.  (4.5)
F

Notice how the second integral in (4.5) is negative definite except for the U, /A, term.
The fact that we cannot determine conditions that imply that 82H(p,, ) is 'posz’tive
definite is unfortunate because it means that we have been unable to establish the
formal stability analogue of Arnol’d’s first theorem (Arnol’d 1965).

The determination of conditions to ensure the negative definiteness of 82H (Pos ho)
are most easily obtained if (4.3) is rewritten using the identity

Fo(Adp +0h)? + (Ahy—F,) (0h)*
= (g + Ay —Fiy) [Fo (g + Ahg— Fy) " Adp +3h*
I (Mg —Fg) (g + Ahg— Fy) ' (ASp)*. (4.6)
Substitution of (4.6) into (4.3) leads to

SZH(pm JJ (6p) V(S]))+F10(Ak —F) (F10+Ak —F)” '(Adp)?
+ (Fo+ Ahyg—Fhp) [Fo(F0+ Ahg—F o)~ YASp+0h)? dxdy
—JJ hy V(8h) -V (3h) dx dy, (4.7)
F

where it is understood that 8% # 0 only in region F in the first integral.
To obtain negative-definiteness we need the Poincaré inequality (see, for example,
Arnol’d 1965; Ladyzhenskaya 1969)

JJ V(Sp)‘V(Sp)dxdy</\ JJ (Adp)* dx dy, (4.8)
R R

min

where A,,;, is the minimum positive eigenvalue of the Sturm-Liouville problem
—Ap=Ap, (v,y)€R, (4.9a)
P(OR) = 0. (4.9b)

So that A, can be bounded away from zero it is necessary that R be bounded in at
least one direction in R? (e.g. a channel). Thus for the half-plane domain R = {(z,y):
0<y< o0, —o0 <z < oo}itfollows Ay, = 0, and (4.8) is of no use. (Other stability
theory problems where a Poincaré inequality is needed include Drazin and Reid’s
(1981, §22) demonstration of a neutrally stable eigenfunction for the Rayleigh
problem and many semicircle theorems for barotropic and baroclinic instability (see,
for example, Pedlosky 1987, §7.5).)
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316 G. K. Swaters
Substitution of (4.8) in (4.7) gives
82H (py, h JJ [Aghin + F1o(Ahg— ) (B + Ahy— F50) 1] (Adp)?
+(F o+ Ahy—Fy) [F1o(F o+ Ahy—Fy) "t Adp+6h]* dae dy
— H hy V(8h) -V (8h) dz dy. (4.10)
P

Thus we have the following.

Theorem 4.1. Steady solutions hy(x,y) and py(x, y) as determined by (2.41) and (2.42)
are linearly stable in the sense of Liapunov if

Flo(Ahg—Fo) (Fio+Ahy—Fi0) 7' < — Ahy, 4.11a)
Flo+Ahy—F5, <0, (4.115)

Sfor all (x,y)eR or F as appropriate, where A, is the minimum positive eigenvalue
for (4.9), and where the disturbance norm denoted ||0q||, where dq = (Adp + Ok, )T, is
given by

8g|? = JJ (Adp)*+ (Adp + dh)* dx dy.
R
Clearly, the conditions (4.11a,b) are sufficient to ensure that the right-hand side
of (4.10) is negative definite. All that is required now is to show that if the stability

conditions (4.11) hold, it is possible to bound the disturbance norm. We begin by
noting that it follows from (4.10) and (4.11) that

82H (p,, h, JJ (Adp)2+ (0 Adp+0h)2 da dy,

where
I' = max {SUP [/\mm+F10(Ah0_F;0)(Fio+Aho—F;o)_l]a sup (Fio"'Ako“F/zo)} <0,
P

o(x,y) = Fio(F10+Ah0_Féo>_l~

This inequality can be re-arranged to give
JJ (Adp)® + (0 ASp +8h)2 da dy < T'82H (p,, hy).
R
However, it also follows that
13¢]I* = ” (Adp)*+[(1—0)(Adp) + (A8p +8h)]* da dy
R
< JJ (Adp)2+2[(1 —0)2(Adp)2 + (0 Adp + dh)? | dx dy
R
<6 JJ (Adp)2+ (0 Adp+dh)? da dy,
R
where ¢ = max {2,sup[1+2(1 —0)%]} > 0. It therefore follows that
P

18q 12 < 61182 (py, hy) = GT8*H(py, ho)l,—o»

Phil. Trans. R. Soc. Lond. A (1993)
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which provides an a priori bound on the disturbance norm under the assumption that
the stability conditions hold. We can obtain a somewhat more physically relevent
estimate if (4.3) is used for 82H (p,, hy)l;—o- It therefore follows that

[8g2 < o-I“‘l{ ff V(8p) + ;o (ASP + k)2
+ ” (Ahg—F0)(8h)2 — oV (8h) - V(Sh) da dy
R
< &[“lf{ f f (AP + k)2 da dy
R

+ J f (8h)2+V(8h)-V(8h) dxdy},
R
where 85 (x, y) = dp(x,y,0), dh(x, y) = dh(x,y,0) and
I’ = min {1ni (), 1nf (Ahy—F%p), 1nf ho)} < 0,

which provides an a prior: estimate on the disturbance norm in terms of an
energy/potential enstrophy norm on the initial perturbations.

We can obtain slightly easier to interpret stability results in terms of the along
shelf velocities. If (2.41) is differentiated with respect to y, one obtains

Fi, = Uy/(s—hy, +AU,), (4.12)
which is valid for all U, = U(x,y) and h, = hy(x,y). Substituting (4.12) into (4.5)
allows 82H (p,, h,) to be expressed in the form
82H (o, h JJ (0p) - V(&p) +[Up/ (s —hgy +AU,)] (ASp +8h)* da dy

+ JJ (Uo/ hgy) (8h)2— hy(hy,)? V(8h/ byy) -V (BN /[ hy,) dxdy.  (4.13)
F

If we use the identity
[Uy/ (8= hgy + AU, (Adp+8h)*+ (U, / hy,) (8h)?

_ Uy(s+AU,) . , . ,
B hoy(S—hOy-l-AUO)[hoy(8+AU0) Adp +3h]*+ Uy(s+AU,) 1 (Adp)?,

then (4.13) can be rewritten in the form
82 H (g, by JJ (dp) - V(@p)+ U[s+ AU, (Adp)?
+ Uy(s+ AUy) [y (8= hgy + AU [hy, (s + AU,) ' Adp + 6] d dy

- J j ho(hoy)?V (8h/hgy) V(8h/hy,) da dy. (4.14a)
F
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318 G. E. Swaters
Substitution of the Poincaré inequality (4.8) into (4.14a) implies
82H (p,, h JJ {Agin+ Ugls+ AU, 1} (Adp)?
+ Uy(s+AU,) [y, (s = hoyy + AU [h, (s +AU,) ™ Adp + k] da dy
— JJF ho(hoy)?V (80 / hy,)) -V (8h/ by, da dy. (4.14b)

Conditions for formal stability are therefore given by the following.

Theorem 4.2. Steady solutions hy(x,y) and py(x, y) as determined by (2.41) and (2.42)
are linearly stable in the sense of Liapunov of

Uy/(s+AU) < —Agkns  hoy(s—hoy +AU) > 0, (4.15a, b)

Jor all (x,y)eR or F as appropriate, where Ap;, is the minimum positive eigenvalue
associated with (4.9) and the disturbance norm is given in Theorem 4.1.

Tt is important to note that the stability conditions (4.11) and (4.15) explicitly
require the existence of sheared flow in the shelf water, i.e. VU, # 0. If U is constant,
then by the galilean invariance of the governing equations we may set U, =0 or
equivalently I}, = 0. Clearly, in this situation, it will be impossible to satisfy (4.11a)
or (4.15a).

The normal mode stability Theorem 3.1 and Theorem 3.2 results given in §3d for
along-shelf steady solutions can be seen to be special cases of Theorem 4.2. Inequality
(4.15b) implies that either

hoy >0, 0 <hy, <AU;+s, (4.16a, b)
or hyy <0, AU+s < hy, <0, (4.17a, b)

must hold. The inequalities (4.16) and (4.17) restricted to the special case hy = hy(y)
and U, = U,(y) are exactly Theorems 3.1 and 3.2 respectively.

(b) The barotropic lemat

The barotropic limit for the original model equations (2.24) and (2.25) corresponds
to setting p = 0in (2.25) and ignoring (2.24) altogether. The general steady solutions
(2.41) and (2.42) reduce to simply

ho Ay +3Vhy - Vhy = Fy(hy). (4.18)

The hamiltonian structure remains, albeit with the obvious modifications, and the
second variation of the constrained (reduced) hamiltonian will be given by

82 (h ” Ahy—F',q) (8h) —hy V(8h) - V(8h) da dy, (4.19a)

which is just (4.3) with 8p = F';, = 0. Following the arguments used to derive (4.5),
it follows that in the barotropic limit

S ” hoy)2 V(8h/ ko) V(8h/hy,) dady, (4.19D)

which is negative definite for all physically realistic &,(x, ¥). Hence we have proved:

Phil. Trans. R. Soc. Lond. A (1993)
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Theorem 4.3. All steady solutions to the barotropic problem
hy+J(RAR+3IVh-Vh, h) = 0, (4.20)

together with appropriate boundary conditions, are linearly stable in the sense of
Liapunov, where the disturbance norm is given by |h|| = [ —82H (hy)]:.

Finally we note that the invariant L introduced in §3b to establish the necessity
of the baroclinic coupling for instability can be now identified as — 82H (h,) evaluated
for along-shelf solutions &, = hy(y).

(¢) A nonlinear stability theorem for the baroclinic problem

It is almost unnecessary to remark that while formal stability is an important
result to establish it does not, however, prove stability since a demonstration of
stability requires a fully nonlinear analysis. As mentioned previously the central
technical issue is that in infinite-dimensions the definiteness of 82H(p,,%,) is not
sufficient to ensure that [ (p, k) is strictly convex in an open neighbourhood of (p,,
hy) in phase space which is required so that we can conclude that steady solutions
form a proper extremum of the appropriately constrained energy hypersurface. As a
consequence additional convexity hypotheses are required to prove nonlinear
stability in the sense of Liapunov. The analysis we present here follows the
arguments described in Holm et al. (1985).

We begin the development of our nonlinear stability result by introducing the
conserved functional

ZL(p,h) = H(py+p, hy+h)—H(py, hy) + C(py+ 0, ho+h) = C(pyg, ), (4.21)

where H(p, k) is the hamiltonian given by (2.32) and C(p, %) is the Casimir given by
(2.40) with densities @, and @, given by (2.46a,b), respectively, as defined by (2.41)
and (2.42) which themselves formally define the steady state solutions py(x,y) and
ho(x,y). The perturbations p(x,y,t) and A(x,y,t) are finite amplitude and pp = p,+p
and hp = hy+h are solutions to (2.24) and (2.25) with the appropriate boundary
conditions. Consequently, £ (p, k) is an invariant of the full nonlinear dynamics.

Substitution of the explicit representations for H and C into (4.21) yields, after a
little algebra,

ZLp,h) =%ff Vp'Vpdxdy+%ff Ahyh?— (hy+h) Vh-Vhdx dy

q0+Ap+h
Jf po(Ap+h) dxdy+ff f £)dEdady

hO
+JJ (Vko'Vh0+h0Ah0+p0)hdxdy+ff J Fy(§)dgdedy, (4.22)
F hoth

where g, = Ap,+h,—sy. Substitution of (2.41) and (2.42) into (4.22) leads to

q0+Ap+h
Jf Vp-Vp dxdy+fj {J (&) dE—F(q,) (Ap+h)} dx dy

hO
+1H Ahg h2— (hy+h) Vi Vh dxdy+” U Fy(&) dE +Fy(hy) h} dz dy.
2))r F \Ungth
(4.23)
Phil. Trans. R. Soc. Lond. A (1993)
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320 G. K. Swaters

Some remarks are in order at this stage. If £ (p, k) is Taylor expanded about (p,
h) = 0, then to leading order % (p, k) = 18%*H (p,, hy) +O(h*, p*, ete.). The higher order
terms come from the expressions containing the integrals of F; and F, and the cubic
term with respect to £ in the third integral in (4.23). However, observe that the
second term in the third integral is negative definite since (h,+ %) VA Vi = 0 because
the total thickness must satisfy h,+ Ak > 0 on purely physical grounds. Again, as in our
discussion of formal stability, it will not be possible due to operator theory
arguments, to bound the second term in the integrand of the third integral by the
first term. Consequently, a demonstration of nonlinear stability would appear to
necessarily entail an argument which shows the negative definiteness of Z(p,h).

In order to proceed further we need the following convexity hypothesis on ¥, and
F,. Suppose that there exists strictly non-zero real numbers a,, a,, f, and S, for which

o, < FUE) < Br, oy <FYE) <P, (4.24a,b)

where the prime indicates differentiation with respect to the argument. We will
establish further conditions on these constants momentarily. If (4.24a,b) are
integrated twice, it follows that

q0+Ap+h
oty (Ap + 1 <f Fy(&) dE—F\(qo) (Ap +5) < S(Ap+h7,  (425a)
a9
h
g R < f Fy(E) A€+ Fy(hg) b < —da, 12, (4.25D)
ho+h

for all q,, h,, p and h.
Substitution of (4.25a,b) into (4.23) implies that

;fj Vp-Vp+o,(Ap+h)*dedy+= JJ Ahy— By) B2 — (hy+h)Vh- Vi dx dy
< ZP(p,h) < %JJ Vp -Vp+p,(Ap+h)2dedy
R

+%” (Ahy— oty) h2 — (hy + h)Vh-Vh da dy
R

<%U Vp Vp+ By(Ap+h) de dy
R

+ % Jf (Ahy—a,)h? da dy
F

1
= QJJR Vp Vp+ B(Ahy— o) (B, + Ay — o)~ (Ap)?

+ (B1+ Ahy— o) [ B1(By + Ay —oy) " Ap + h]* dedy,  (4.26)

where it is understood that integrands involving 4, and % are only over the region F.
Assuming further that we may introduce the Poincaré inequality

JJ Vp-Vpdedy < ! fj (Ap)2da dy,
R /\min R

Phil. Trans. R. Soc. Lond. A (1993)
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where A, ;, is the minimum eigenvalue associated with (4.9), then

1
L. <3 [ [ Datat (Ot =) (6, + Ay =1 ()

+ (B +Ahy— ) [B1(By+ Ahy— o) TAp+h]2dady.  (4.27)

Nonlinear stability will be proved when a, and S, are such that Z(p, k) is negative
definite. We can therefore state the following.

Theorem 4.4. If the functions F\(§) and F,(&), which define the steady-state solutions
Do, y) and hy(xz,y) through the relations

Po = Fi(Apy+ by —sy),
Pothy Aho"'%Vho'Vho = Fy(hy),

satisfy the convexity estimates ,
al <F1(g) < ﬂl;

oy < Fy(§) < B,
where ay, f1, a, and £, are strictly non-zero real constants satisfying
Li(Ahy—aty) (B + ARy —ay) ™t < —1/An, (4.28a)
Bi—ay+ Ak, <0, (4.28b)

Sfor every point (x,y) in R or F as appropriate, and where A, i the minimum eigen-
value of the homogeneous Dirichlet problem (4.9), then the steady solutions p,(x,y) and
ho(x,y) are nonlinearly stable in the sense of Liapunov with respect to the disturbance
norm ||q| gtven by

lql® = f f (Ap) + (Ap+ B2 dz dy. (4.29)
R

All that remains to be shown is the following a prior: estimate on the disturbance
norm. Assuming the (4.28) holds, it follows from (4.27) that

Pp.hy<T f f (ApY+ (BB Ay —ty) 1Ap 4+ h ] dac dy, (4.30)
R

where
I' = jmax{sup [Ag, + F1(Aky—a,) (B, + Ahy—a,) ™1, sup(B; + Ahy—a,)} < 0.
F F

This inequality can be re-arranged to give

ff (Ap)*+ (cAp+h)*dxdy < I L (p, h), (4.31)
R

where o, y) = (B +Ahy—oa,) .

However, it also follows that

lql = f f (Ap)+ (1 —0)Ap+ (sAp + ) dzdy
< Jf [1+2(1—0)%)(Ap)®*+2(cAp+h)*dady
R

< &jj (Ap)2+ (cAp+h)2dxdy (4.32)
R
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where ¢ = max {2, sup [1+2(1—0?)]} > 0. Inequalities (4.32) and (4.31) together
imply F

lqll® < 6T L (p, h) = 6T L (B, h), (4.330)
where p(z,y) = p(z,y,0) and h(z,y) = h(z, y,0). However, from (4.26) we may infer
that

lql® < ON'F—II:{JJ (Ap+h)?dxdy
R

+ ” h2 4 (hy+h)Vh Vi dx dy}, (4.330)
R
where

I’ = Lmin{a,,inf (Ahy,— f,),— 1} < 0.
F

Inequality (4.33b) gives an a priori estimate on the disturbance norm in terms of the
initial potential enstrophy and energy of the perturbation provided the conditions of
the stability theorem hold.

(d) Nonlinear stability in the barotropic limit

Unlike the barotropic limit examined in the formal stability problem discussed in
§4b, the monlinear stability of steady flows in the barotropic limit cannot be
unconditionally established. The barotropic limit for ., which we denote Z(h),
obtained by setting p = F, = 0 in (4.23) is given by

L(h) = %” Ahyh?— (hy+h) Vh-Vhdxdy+” { f " F,(£) A&+ Fy(h,) k} d dy.
F F \Jhgth*
(4.34)

This functional is an exact invariant of the full nonlinear dynamics in the barotropic
limit. It is straightforward to verify that if £(h) is Taylor expanded about & =0,
that £ (h) = 18%H (h,) + O(h®), where 82H (h,) is given by (4.19a). While it was possible
to show in §4b that 82H(h,) < 0 for all suitably smooth steady solutions h, = k,(z, ),
it is not, in general, possible to show the £ (k) is unconditionally negative definite.
It appears that the best result one can obtain is the barotropic limit of Theorem 4.3
given by the following.

Theorem 4.5. If the function F,(§) which defines the steady solution hy(x,y) through
the relation
ho Ahy+3iVh,-Vh, = Fy(h,),

satisfies the convexity estimate
sup (Ah,) < a, < Fy () < f, < o0, (4.35)
F

then the steady solution hy(x,y) is nonlinearly stable for the barotropic limit of the
dynamics in the sense of Liapunov with respect to the disturbance norm given by

2% = JJ h*dxdy.
R
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It is straightforward to obtain an a priori estimate on the disturbance norm ||
following arguments similar to those used to obtain (4.33). What is more interesting,
however, is that we can use Theorem 4.5 to obtain an a priori estimate for the
disturbance energy in the barotropic limit. Assuming a, < Fy(§) < f,, it follows from
(4.34) that

” (A= f,) h— (h+ ko) VE-Vhdzdy < 22(h) = 22(h)
<” (Ahy— ) B2 — (h+ hy) VA Vhdz dy,
F

where A(z,y) = h(z,y,t = 0). However, assuming (4.35) this expression can be
rewritten in the form

0< ” (h+ hy) Vi Vh+ (y— Ahg) B2 dady
F

< ” (h+ho) Vh-Vhda dy + (8, — Ahy) h? dz dy,
F

which in turn implies

0 < E(h) < T'E(h), (4.36)

where Eph) = JJ (h+hy) Vh-Vh+h?dxdy, (4.37)
F

r = max [1’ SupF (ﬂZ_AhO)] > 0 (438)

min [1, ian (az - Aho)]

5. Conclusions

In this article we have attempted to construct and analyse a new model describing
the baroclinic dynamics of density-driven currents and fronts over a sloping
continental shelf. The model presented here is motivated by the desire to develop a
theory in which the frontal dynamics balances the competing influences associated
with the release of mean kinetic energy associated with a geostrophically balanced
current, the generation of relative vorticity in the surrounding slope water by
baroclinic vortex-tube stretching due to the perturbed front, and the rectifying
influence of the underlying background vorticity gradient associated with a sloping
bottom. All of these dynamical processes are important in attempting to describe the
real dynamics of density-driven currents. Fronts and currents of this kind are typical
oceanographic features in the coastal regions of the world oceans.

We were able to show that the model developed here, which was obtained in a
formal asymptotic expansion of the appropriate two-layer shallow-water equations,
possessed a non-canonical hamiltonian formulation. This structure was especially
useful in constructing a rigorous mathematical analysis of the general linear and
nonlinear stability problem.

A detailed examination of the linear stability problem was given for both arbitrary
and the more physically useful along-shelf steady flows. In particular, we were able
to show that in the barotropic limit the model predicts linear stability in the sense
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of Liapunov thus excluding both algebraic and modal instabilities. This is an
important result because it serves to underscore the point that the instabilities that
our baroclinic model will produce do not correspond to simply baroclinically-
modified modes of those previously found, but rather represent a new class of
instabilities not described before.

For the normal-mode instability problem associated with along-shelf steady flows,
two stability theorems could be obtained which serve to illustrate the stabilizing
influence of the sloping bottom. In addition, it was possible to interpret the necessary
condition for instability as a potential vorticity constraint which stated that the
leading-order potential must increase in the offshore direction, i.e. a zero in the cross-
shelf potential vorticity is not required for instability.

We were able to show, exploiting the hamiltonian structure of the governing
equations, that general steady-state solutions satisfy the first-order necessary
conditions for extremizing a suitably constrained hamiltonian. In addition, we were
able to obtain relatively simple conditions for establishing the formal stability and
hence linear stability in the sense of Liapunov for arbitrary steady flows. In the
along-shelf flow limit, it was shown that these stability results reduced to the results
previously obtained via the normal-mode approximation. Finally, motivated by the
formal stability results, we were able to establish sufficient conditions for the
nonlinear stability of density-driven currents and fronts and provided a rigorous
saturation bound in terms of the initial potential enstrophy and energy of the
perturbations.

Preparation of this manuscript was supported in part by an Operating Grant awarded by the
Natural Sciences and Engineering Research Council of Canada, and by a Science Subvention
awarded by the Department of Fisheries and Oceans of Canada.
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